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Replicability crisis

Scientists replicated 100 recent
psychology experiments. More than half
of them failed.
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Where our work fits into research on enhancing replicability

® There's been progress in “meta-research”. These endeavors primarily focus on
transparency, ethics, reproducible computing practices, etc.

® We focus on the statistical methodology for replicability analysis:
® Suppose we do have multiple reliable and independent studies of data on the

efficacy of a new drug. Based on these data, how do we test whether the drug
is effective in at least a good portion of, if not all, studies ?
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Background: Conjunction null hypothesis

Let [¢] ={1,...,£} for any natural number £ € N

Suppose 1, .. ., pn are the effects of the same underlying phenomenon in n
different studies (e.g. effectiveness of the new drug on n different populations).

A C R is null region; the phenomenon is deemed non-existent in study j if the
null hypothesis

Hj:pje A
is true. (e.g. if A= (—o00,0], then the drug is only effective when p; > 0.)

Rigorously, we can test the conjunction null hypothesis that
i i & AY< n—1;

rejecting this means the effect exists consistently in all studies.

More generally, the analyst can pre-specify a replicability level u € {1,..., n},
and test the partial conjunction (PC) null hypothesis (Benjamini and Heller,
2008)

HY iy ¢ AY< u— 1,

and declare the phenomenon u out of n replicable if H*/" can be rejected.
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Testing a PC null hypothesis

® Suppose pi, ..., pn are independent p-values for their respective base nulls
Hi, ..., Hy.
® Ordering them as p(,. .., p(s), a p-value for HY/Il also called a partial

conjunction (PC) p-value, is typically formed as
P/ = f(P(uys - -+ s P(n))5
where f is a known p-value combining function, such as the Fisher function
f(p(u)a ey p(n)) =1- FX%(n—u+1) < -2 Z Iog(p(J))>7
Jj=u
where F, is the chi-squared CDF of s degree.
® Easy to show that
P(p/" < t) < t for all t € [0,1] under H*/I"].

Rejecting H*/I"l when pu/In < g controls Type | error under g € (0,1).
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Multiple testing of PC hypotheses

High-throughput experiments usually gives us many PC hypotheses to test:

Example (Differential gene expression for autoimmune disorders)

® Consider n = 3 independent mouse studies.

® Each study examines the same set of m = 6,587 genes in healthy and
autoimmune medullary thymic epithelial cells (mTECs).

® For each (i,j) € [m] x [n], pij € R is the mean difference in expression level of
gene i between healthy and autoimmune mice in study j.

® If uij #0 (i.e. A; =0), then gene i is deemed a potential marker for

autoimmunity, as its expression differs between healthy and autoimmune mice
on average.
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Multiple testing of PC hypotheses

® Let A; C R be the null region for feature i. We have the base null hypotheses

® Visualization:

Hij : i € Aj for (i,j) € [m] x [n].

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Study 1 Study 2 Study 3
1 € Ay pz € Ay p3 € Ay
p2 € Ay pog € Az o3 € Ay
pg1 € Az p32 € Az paz € Ag
141 € Ay a2 € Ag a3 € Ay
151 € As ps2 € As K53 € Az
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Controlling the false discovery rate

® We aim to control the false discovery rate (FDR) when testing the PC nulls

HY/) g/ e

® Suppose R C [m] is a data-driven set of rejected PC nulls; the FDR for R is

~ . 1{i e RY x H{H"" is true
FDRep = FDRiep(R) = E et 't b, _ ;
max(1, =y i € RY})

® Standard protocol: applying the BH-procedure (Benjamini and Hochberg,
1995) to the PC p-values

u/ln] u/ln]
TR m .

p

But it can be extremely underpowered, especially multiplicity has to be
corrected for.

<P
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Low power when v = n

1.00 u/[n]
e — 1
[
g 0501 - 20[4)
& 0.254 ~- 34

0.00 i i i 4114]

1 250 500 750 1000
m
Figure: Power of the BH procedure (with FDR target g = 0.05) applied to m = 1,10, 20, - - -, 1000 PC

p-values under replicability levels u = 1,2, 3, 4, based on a simulation experiment with a total of n = 4
studies. ALL base hypotheses are non-null in this setting.
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The ParFilter is our FDR-controlling method for simultaneously testing PC null
hypotheses with power via partitioning and filtering.
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The ParFilter |

With a target FDR level g, a simplified version of ParFilter operates by:

1. Partitioning the n studies into K groups, i.e. for a chosen K € [u], let
G1,G2,...,Gk C [n]

be disjoint subsets partitioning [n], and let wi, ..., wx € (0, 1] be some local
error weights such that

K
Z Wy = 1.
£=1

2. For each i € [m] and k € [K], define uj as a local replicability level that satisfies

uik < |G| forall k € [K] and Z U = u.
ke[K]
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The ParFilter 11

3. Define the local PC null hypothesis
H/O 1 € Gus i & AYIS i — 1,
and form a local PC p-value
pi/o = ﬁk((pU)jegk)'

4. The ParFilter then considers a candidate rejection set

R(t) = ﬂ {iESk:pf“‘/g“ Sl/ik'tk}. (1)
ke[K]
where
® t=(t,...,tx) € [0,00)K is a vector of thresholds.
® S C [m] is a selected set depending on {p;}jzg, (p-values outside of group k).
Example:
Sk = m {i € [m]: p;l"e/ge <wg- q} for each k € [K]. (2)

Ce[KIN{K}

® Uik, Umk € [0,00) are local PC weights that satisfies Zeesk vek = | Skl
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The ParFilter 111

5. Consider the set of threshold vectors
T = {t = (t,---, tx) € [0,00)" : F/D\Pk(t) < wg-qforall ke [K]},

where
|Sk| -tk
IR(t)|V1

conservatively estimates the groupwise false discovery proportion

FDP,(t) =

et | {i € R} x I{H*/% is true}

FDP«(t) = ROV

6. Compute a data-dependent threshold vector t = (f1,- - -, fx) such that
t<tforallteT,
plug this into (1) and reach a final rejection set R(t). It has the property
FDRwep(R(t)) < q
under “standard assumptions”.
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The gist of the algorithm:

® When a feature i is H,.”"k/gk replicable for all group k € [K], then it is u/[n]
replicable.

® When the groupwise false discovery rate E[FDP(t)] is under w; - g, then the
overall FDRep(R(t)) is under g.

® The selection in (2) borrows information between different groups to filter out
features that likely won't be u/[n] replicable, so multiplicity in each group k is
cut down from m to |Sk|.
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Side information to further boost power

® There may be side information in the form of a valid covariate x; that is also
informative for testing Hj;.

® For instance, in the example of autoimmune disorders, x; can be taken as the
differential expression of gene i in cells from a different part of the thymus
other than the medulla, such as the cortex.

® These covariates can be used to train better local PC weights vik, ..., Vmk, to
ultimately promote the rejection of the non-null H” [l
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Results for our applied example of autoimmune disorders

Gene Stouffer GBHPC p-value (P,’3/[3])

520 | 5%
Mknk2 0.01260681
Mreg 0.01266433
Ecscr 0.01278160
Jarid2 0.01286667
o5 Ncl 0.01313040
. Nhsl1 0.01320058
- Bcl212 0.01328083
Relll 0.01344367
Fgfbpl 0.01369939
Antxrl 0.01378867

éﬁb <

Rejections

Dkcl 0.01389120
Soa N & e Hspg?2 0.01389120
FS TS s Tnfrsflla 0.01485068
Method
Table: Thirteen genes identified as 3/[3]
Figure: Rejection results for 3/[3] replicability replicated by ParFilter but not by other
across compared methods. methods at g = 0.05.
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Future Work

® Undergoing revision.

® Extension to incorporate e-values (Ramdas and Wang, 2024) to more
powerfully handle dependence across features.
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