A covariate-adaptive test for replicability across multiple studies with false discovery rate control

Dennis Leung

University of Melbourne

Nov 28, 2025

Replicability crisis

Scientists replicated 100 recent psychology experiments. More than half of them failed.

Where our work fits into research on enhancing replicability

- There's been progress in "meta-research". These endeavors primarily focus on transparency, ethics, reproducible computing practices, etc.
- We focus on the statistical methodology for replicability analysis:
- Suppose we <u>do</u> have multiple *reliable* and independent studies of data on the efficacy of a new drug. Based on these data, how do we *test whether the drug* is effective in at least a good portion of, if not all, studies?

Background: Conjunction null hypothesis

- Let $[\ell] \equiv \{1, \dots, \ell\}$ for any natural number $\ell \in \mathbb{N}$
- Suppose μ_1, \ldots, μ_n are the effects of the same underlying phenomenon in n different studies (e.g. effectiveness of the new drug on n different populations).
- $\mathcal{A} \subset \mathbb{R}$ is *null region*; the phenomenon is deemed non-existent in study j if the null hypothesis

$$H_i: \mu_i \in \mathcal{A}$$

is true. (e.g. if $\mathcal{A}=(-\infty,0]$, then the drug is only effective when $\mu_j>0$.)

· Rigorously, we can test the conjunction null hypothesis that

$$|\{i: \mu_i \not\in \mathcal{A}\}| < n-1;$$

rejecting this means the effect exists consistently in all studies.

 More generally, the analyst can pre-specify a replicability level u ∈ {1,...,n}, and test the partial conjunction (PC) null hypothesis (Benjamini and Heller, 2008)

$$H^{u/[n]}: |\{i: \mu_i \notin A\}| \le u-1,$$

and declare the phenomenon \underline{u} out of n replicable if $H^{u/n}$ can be rejected.

Testing a PC null hypothesis

- Suppose p_1, \ldots, p_n are independent p-values for their respective base nulls H_1, \ldots, H_n .
- Ordering them as $p_{(1)}, \ldots, p_{(n)}$, a *p*-value for $H^{u/[n]}$, also called a partial conjunction (PC) *p*-value, is typically formed as

$$p^{u/[n]} = f(p_{(u)}, \ldots, p_{(n)}),$$

where f is a known p-value combining function, such as the Fisher function

$$f(p_{(u)},\ldots,p_{(n)})=1-F_{\chi^2_{2(n-u+1)}}\bigg(-2\sum_{j=u}^n\log(p_{(j)})\bigg),$$

where $F_{\chi^2_s}$ is the chi-squared CDF of s degree.

Easy to show that

$$P(p^{u/[n]} \leq t) \leq t$$
 for all $t \in [0,1]$ under $H^{u/[n]}$.

Rejecting $H^{u/[n]}$ when $p^{u/[n]} \leq q$ controls Type I error under $q \in (0,1)$.

Multiple testing of PC hypotheses

High-throughput experiments usually gives us many PC hypotheses to test:

Example (Differential gene expression for autoimmune disorders)

- Consider n = 3 independent mouse studies.
- Each study examines the same set of m = 6,587 genes in healthy and autoimmune medullary thymic epithelial cells (mTECs).
- For each $(i,j) \in [m] \times [n]$, $\mu_{ij} \in \mathbb{R}$ is the mean difference in expression level of gene i between healthy and autoimmune mice in study j.
- If $\mu_{ij} \neq 0$ (i.e. $A_i = 0$), then gene i is deemed a potential marker for autoimmunity, as its expression differs between healthy and autoimmune mice on average.

Multiple testing of PC hypotheses

• Let $A_i \subseteq \mathbb{R}$ be the *null region* for feature i. We have the base *null hypotheses*

$$H_{ij}: \mu_{ij} \in \mathcal{A}_i \text{ for } (i,j) \in [m] \times [n].$$

Visualization:

	Study 1	Study 2	Study 3
Feature 1	$\mu_{11} \in \mathcal{A}_1$	$\mu_{12}\in\mathcal{A}_1$	$\mu_{13}\in\mathcal{A}_1$
Feature 2	$\mu_{21}\in\mathcal{A}_2$	$\mu_{22}\in\mathcal{A}_2$	$\mu_{23}\in\mathcal{A}_2$
Feature 3	$\mu_{31}\in\mathcal{A}_3$	$\mu_{32}\in\mathcal{A}_3$	$\mu_{33}\in\mathcal{A}_3$
Feature 4	$\mu_{41}\in\mathcal{A}_4$	$\mu_{42}\in\mathcal{A}_4$	$\mu_{43} \in \mathcal{A}_4$
Feature 5	$\mu_{51}\in\mathcal{A}_{5}$	$\mu_{52}\in\mathcal{A}_{5}$	$\mu_{53}\in\mathcal{A}_{5}$
		:	

7 / 18

Controlling the false discovery rate

We aim to control the false discovery rate (FDR) when testing the PC nulls

$$H_1^{u/[n]}, H_2^{u/[n]}, \ldots, H_m^{u/[n]}.$$

• Suppose $\hat{\mathcal{R}}\subseteq [m]$ is a data-driven set of rejected PC nulls; the FDR for $\hat{\mathcal{R}}$ is

$$\mathsf{FDR}_{\mathsf{rep}} = \mathsf{FDR}_{\mathsf{rep}}(\widehat{\mathcal{R}}) \equiv \mathbb{E}\left[\frac{\sum_{i \in [m]} I\{i \in \widehat{\mathcal{R}}\} \times I\{H_i^{u/[n]} \text{ is true}\}}{\max(1, \sum_{i \in [m]} I\{i \in \widehat{\mathcal{R}}\})}\right].$$

 Standard protocol: applying the BH-procedure (Benjamini and Hochberg, 1995) to the PC p-values

$$p_1^{u/[n]},\ldots,p_m^{u/[n]}.$$

But it can be extremely underpowered, especially multiplicity has to be corrected for.

Low power when u = n

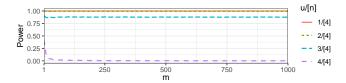
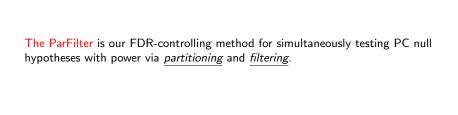


Figure: Power of the BH procedure (with FDR target q=0.05) applied to $m=1,10,20,\cdots,1000$ PC p-values under replicability levels u=1,2,3,4, based on a simulation experiment with a total of n=4 studies. ALL base hypotheses are non-null in this setting.



The ParFilter I

With a target FDR level q, a simplified version of ParFilter operates by:

1. Partitioning the *n* studies into *K* groups, i.e. for a chosen $K \in [u]$, let

$$\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_K \subseteq [n]$$

be disjoint subsets partitioning [n], and let $w_1, \ldots, w_K \in (0, 1]$ be some *local error weights* such that

$$\sum_{\ell=1}^K w_\ell = 1.$$

2. For each $i \in [m]$ and $k \in [K]$, define u_{ik} as a local replicability level that satisfies

$$u_{ik} \le |\mathcal{G}_k|$$
 for all $k \in [K]$ and $\sum_{k \in [K]} u_{ik} = u$.

The ParFilter II

3. Define the *local* PC null hypothesis

$$H_i^{u_{ik}/\mathcal{G}_k}: |\{j \in \mathcal{G}_k : \mu_{ij} \notin \mathcal{A}_i\}| \leq u_{ik} - 1,$$

and form a local PC p-value

$$p_i^{u_{ik}/\mathcal{G}_k} \equiv f_{ik}((p_{ij})_{j\in\mathcal{G}_k}).$$

4. The ParFilter then considers a candidate rejection set

$$\mathcal{R}(\mathbf{t}) \equiv \bigcap_{k \in [K]} \left\{ i \in \mathcal{S}_k : p_i^{u_{ik}/\mathcal{G}_k} \le \nu_{ik} \cdot \mathsf{t}_k \right\}. \tag{1}$$

where

- $\mathbf{t} = (t_1, \dots, t_K) \in [0, \infty)^K$ is a vector of thresholds.
- $S_k \subseteq [m]$ is a selected set depending on $\{p_{ij}\}_{j \notin G_k}$ (p-values outside of group k). Example:

$$S_k = \bigcap_{\ell \in [K] \setminus \{k\}} \left\{ i \in [m] : p_i^{u_{i\ell}/\mathcal{G}_{\ell}} \le w_{\ell} \cdot q \right\} \quad \text{for each } k \in [K]. \tag{2}$$

• $\nu_{1k},\ldots,\nu_{mk}\in[0,\infty)$ are local PC weights that satisfies $\sum_{\ell\in\mathcal{S}_k}\nu_{\ell k}=|\mathcal{S}_k|$

The ParFilter III

5. Consider the set of threshold vectors

$$\mathcal{T} \equiv \Big\{\mathbf{t} = (t_1, \cdots, t_K) \in [0, \infty)^K : \widehat{\mathsf{FDP}}_k(\mathbf{t}) \leq w_k \cdot q \text{ for all } k \in [K]\Big\},$$

where

$$\widehat{\mathsf{FDP}}_k(\mathbf{t}) \equiv \frac{|\mathcal{S}_k| \cdot t_k}{|\mathcal{R}(\mathbf{t})| \lor 1}$$

conservatively estimates the groupwise false discovery proportion

$$\mathsf{FDP}_k(\mathbf{t}) \equiv \frac{\sum_{i \in [m]} I\left\{i \in \mathcal{R}(\mathbf{t})\right\} \times I\{H_i^{u_{ik}/\mathcal{G}_k} \text{ is true}\}}{|\mathcal{R}(\mathbf{t})| \vee 1}.$$

6. Compute a data-dependent threshold vector $\hat{\mathbf{t}} = (\hat{t}_1, \cdots, \hat{t}_K)$ such that

$$\mathbf{t} \leqslant \hat{\mathbf{t}}$$
 for all $\mathbf{t} \in \mathcal{T}$,

plug this into (1) and reach a final rejection set $\mathcal{R}(\hat{\mathbf{t}})$. It has the property

$$\mathsf{FDR}_{\mathsf{rep}}(\mathcal{R}(\hat{\mathbf{t}})) \leq q$$

under "standard assumptions".

The gist of the algorithm:

- When a feature i is $H_i^{u_{ik}/\mathcal{G}_k}$ replicable for all group $k \in [K]$, then it is u/[n] replicable.
- When the groupwise false discovery rate E[FDP_k(t)] is under w_i · q, then the overall FDR_{rep}(R(t)) is under q.
- The selection in (2) borrows information between different groups to filter out features that likely won't be u/[n] replicable, so multiplicity in each group k is cut down from m to $|\mathcal{S}_k|$.

Side information to further boost power

- There may be side information in the form of a valid covariate x_{ij} that is also informative for testing H_{ii}.
- For instance, in the example of autoimmune disorders, x_{ij} can be taken as the differential expression of gene i in cells from a different part of the thymus other than the medulla, such as the cortex.
- These covariates can be used to train better local PC weights ν_{1k},\ldots,ν_{mk} , to ultimately promote the rejection of the non-null $H_i^{u/[n]}$'s.

Results for our applied example of autoimmune disorders

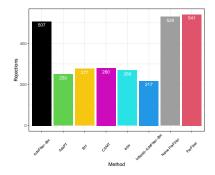


Figure: Rejection results for 3/[3] replicability across compared methods.

Gene	Stouffer GBHPC <i>p</i> -value $(p_i^{3/[3]})$
Mknk2	0.01260681
Mreg	0.01266433
Ecscr	0.01278160
Jarid2	0.01286667
Ncl	0.01313040
Nhsl1	0.01320058
Bcl2l2	0.01328083
Rell1	0.01344367
Fgfbp1	0.01369939
Ant×r1	0.01378867
Dkc1	0.01389120
Hspg2	0.01389120
Tnfrsf11a	0.01485068

Table: Thirteen genes identified as 3/[3] replicated by ParFilter but not by other methods at q=0.05.

Future Work

- Undergoing revision.
- Extension to incorporate e-values (Ramdas and Wang, 2024) to more powerfully handle dependence across features.

References

- Benjamini, Y. and Heller, R. (2008). Screening for partial conjunction hypotheses. Biometrics, 64(4):1215–1222.
- Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. <u>Journal of the Royal</u> Statistical Society. Series B (Methodological), 57(1):289–300.
- Ramdas, A. and Wang, R. (2024). Hypothesis testing with e-values. <u>arXiv preprint</u> arXiv:2410.23614.